
U.S. DEPARTMENT OF THE INTERIOR
U. S. GEOLOGICAL SURVEY

SCRNDIG-A BASIC program for digitizing
from a screen image on a DOS-based computer

by

Philip Powers1 and Giovanni Crosta2

Open-File Report 92-522

Although this program has been extensively tested, the U. S. Geological Survey
cannot guarantee that it will give accurate results for all applications nor that it will
work on all computer systems. Any use of trade, product, or firm names is for
descriptive purposes only and does not imply endorsement by the
U. S. Government.

J Denver, Colorado 2University of Milano
Milano, Italy

1992

CONTENTS

Page

Acknowledgments ii
Diskette contents ii
Abstract 1
Introduction 1
Advantages and disadvantages of using SCRNDIG 2
Running SCRNDIG 3
Summary 14
References 14
Appendix BASIC program listings 15

SCRNDIG.BAS 15
MOUSE.BAS 36

ILLUSTRATIONS

Figure 1. Sample VGA graphics image that can be
used in SCRNDIG for test digitizing 8

ACKNOWLEDGMENTS

SCRNDIG was written using Microsoft BASIC Professional Development
System version 7.1 (Microsoft Corp., 1991). The program consists of two
modules, SCRNDIG.BAS and MOUSE.BAS. These two modules are linked
together by SCRNDIG.MAK. The elementary mouse-control routines were
written by Microsoft. Permission to use and distribute these routines is included
in the documentation within the subroutines (p. 36). The MOUSEPOLL
subroutine was modified considerably for use with the SCRNDIG program.

The ability to display a PCX image was added to the BASIC program by
linking the source code to a library of routines that were originally developed in
assembly language by Genus Microprogramming, Inc. The PCX import portions
of this program are copyright protected by Genus Microprogramming, Inc. 1988-
1990 (Genus Microprogramming, 1991). This acknowledgement is a requirement
condition for distribution of programs that include modified or unmodified portions
of the software.

DISKETTE CONTENTS

The source code, executable code, and sample graphics image are included
on the program disk. The files on the disk are:

SCRNDIG.BAS (main code module),
MOUSE.BAS (support code module),
SCRNDIG.MAK (make file that combines main and support code),
SCRNDIG.EXE (executable code), and
IMAGEGRY.PCX (sample graphics file of 640 X 480 resolution).
README (Title page of this report)

n

ABSTRACT

SCRNDIG.EXE is a computer program that allows the user to locate an
origin, set the X and Y scales, and pick points from an imported graphics image.
The program imports a 640 by 480 pixel PC Paintbrush format file (.PCX). This
is one of the oldest and most common raster file formats. The points digitized
from the screen are stored in an ASCII data file for later use in a spreadsheet or
a graphing program.

SCRNDIG.EXE will run on any PC-DOS (IBM) or MS-DOS (Microsoft
Corp.) based system running DOS 3.0 or higher and equipped with the following
hardware: a video graphics adapter (VGA) graphics display, a mouse, and 640
kilobytes of memory. This program documentation was written for someone with
experience in DOS based microcomputing.

This program simplified the digitizing of experimental landslide/debris data
that was recorded with a video camera and transferred into a microcomputer using
a video digitizer card.

INTRODUCTION

The need for a better method of gathering and storing experimental data
from a landslide/debris modeling project led to the development of SCRNDIG.
SCRNDIG is a screen digitizing program that converts screen coordinates from a
graph or image to user (useful) units. User units are produced from a linear
scaling of the screen coordinates. The user units are stored in a data file with one
X-Y pair, separated by a comma, on each line. These data can then be imported
and used with other data analysis programs.

Several methods of recording experimental data were considered (using 35
mm slides, prints, movie cameras, video cameras, etc.). The method that met
most of our needs was recording the landslide/debris modeling experiment with a
video camera. This method provided continuous records of the experiment with
a time stamp on each recorded frame. Images taken at selected time intervals
could then be played back from the video camera into a microcomputer equipped
with a video graphics capture board. The image file on the disk and the figure in
this report are actual landslide/debris modeling images that were captured with a
video digitizing board.

Using SCRNDIG, measurements were made on screen using the captured
image and stored in a file for importing into a spreadsheet program for conversion
and graphing.

ADVANTAGES AND DISADVANTAGES OF USING SCRNDIG

Prior to using the SCRNDIG program, we used both a digitizing board and
hand measurements to obtain data from graphs and illustrations. Based on this
experience we compiled a list of advantages and disadvantages.

The main advantage of using SCRNDIG is that a digitizing tablet is not
needed. In addition, several advantages stem from the interactive nature of
SCRNDIG. Digitizing from the screen is faster than making hand measurements,
and in most cases is faster than using a tablet. Because the digitized points are
highlighted on the screen for reference, interruptions are less likely to cause you
to lose your place. Digitizing from a screen is less fatiguing then bending over a
digitizing tablet. Finally, SCRNDIG allows gridlines to be superimposed on the
image for visual reference.

The main disadvantage of using SCRNDIG is that special hardware is
required. SCRNDIG requires a video camera and video capture board, or a
scanner to rasterize the image so it can be displayed on a computer screen. The
image is required by SCRNDIG to be a 640 X 480 pixel PCX-format image. PCX
images not meeting this size requirement will be rejected. Screen digitizing may
result in less accuracy then what can be obtained with a high resolution digitizing
tablet. An invisible rectangular block around the screen cursor might obscure the
reference marks on the screen. In addition, the mouse cursor needs to be moved
at least 5 screen pixels you digitize another point. The number of data pairs is
limited by SCRNDIG to 4000. If more points are required, it is necessary to stop
and store the first 4000 data pairs and then open a new file for additional data
pairs.

The problem of the screen cursor concealing the reference points has been
partially eliminated by highlighting the previously digitized point only after the
current point is selected. This usually moves the cursor block far enough away
from the last point to prevent an overlap. The order of digitizing can be conducted
in a manner to reduce the number of concealed reference points. The best order
is to digitize from left to right and from top to bottom.

Rasterizing an image into the proper VGA resolution is best handled using
a scanner or video capture board that outputs the image in the needed resolution
of 640 by 480 pixels. The video capture board that we use is the Professional
Series Color Video Digitizer by Computereyes.

RUNNING SCRNDIG

To set apart the information that is entered from the keyboard from the text
of this report, the keyboard input is in bold italics. Single function keystrokes like
[BREAK], [ENTER], and [ESC] are capitalized and enclosed in brackets. Screen
messages are boxed in with double lines, and are shaded to appear like a computer
display. Reference to color in this report only applies to color images.

This is a sample of a screen message or prompt

The first step in getting started is to insert the program/data disk into the
computers drive. The A: drive is generally a 5.25" drive, and the B: drive a 3.5"
drive. To run the program from a floppy drive, change the working drive to the
floppy drive by typing the appropriate drive letter followed by a colon (i.e. A:).
If you wish to run the program from the hard drive, copy the floppy disk files to
the hard disk with the DOS copy command (i.e. copy A:*.* C:*.*).

Now start the program by typing SCRNDIG. An introductory screen
appears with the following title page information.

U.S. GEOLOGICAL SURVEY
SCRNDIG-A BASIC? program for dij

from a screen Image on a DOS-based computer

by

Philip S, Powers and Gipvanni Cipsta

TO'continue PRESS ANY KEY.

Press ANY KEY to proceed to the next screen. The next screen informs the
user how to perform an abnormal exit from the program in case of a problem. If

you encounter a problem while running SCRNDIG you may exit the program by
pressing and holding [CTRL], and then pressing the [BREAK] key. This aborts
the program and returns you to DOS.

* * * IMPORTANT * * *

to stop the program at any time.rou find it
press [CTRL]

To cxMtifiue S^ith the program PRESS ANY KEY,

Press ANY KEY to proceed.

The next screen asks if this digitizing session is a continuation of an earlier
digitizing session. If you answer (Y)es to this prompt, SCRNDIG will use
information in two support files that were saved when the image was digitized in
a prior session. This allows the user to append more digitized points to the file.
The default file name for the first support file will have the same first name as the
original graphics image file but will have an extension of .DAT. This file contains
the data pairs. The second file also has the same first name but has an extension
of .PAR. This file contains the parameters for the number of previously digitized
points, and the coordinates of the registration points. If this digitizing session is
new and is not related to another session, enter (AOo. For a brief HELP screen
enter (//)elp. The screen appears as follows:

if this is the continuation of a plot, and you would like to
digitize more data points where you stopped^

enter (Y)es,
if not, press (N)o,

For HEliP press (H)elp.

For this sample session press (H) for help.

The following is the display of the HELP screen:

A continuation means that you have already digitized data from a
screen imaie during a prior digitizing session and you would like
to continue at the point where you left the program during the prior
session. The additional information needed for continuation
was saved in two auxiliary files. These files have a default
extension of *DAT and *.PAR.
You will be requested to enter the proper filenames if you select
(Y)es for a continuation.
Tlie first requested input is the graphics file,
Tfie second requested input is the parameter fjle.
tne third requested input is the ASCII data file.

the continuation of a plot and you would like to
digitize more data points where you stopped,

enter (Y)es,
if not? press (I^)Ov
For HELP press (H)elp.

For this session press N for

The next screen prompt asks for the location of your image/data files in case
your files are not in the default directory.

To assist in finding the correct grapjiie input fife,
eioter the drive and path of the image/data files,

(ie, A:\temp)

[ENTER) on an empty line means your files are in the
current directory.

For this session, press [ENTER].
The next prompt gives you the opportunity to enter a wild card file filter

combination to display a subset of files. This can be useful if you have too many
files in the default directory to display on the screen at one time. Some examples
of valid entries are *.DAT, *.BIN, A*.*, A*.A*. An entry of *AB.* is treated
the same as *.*. The entries are not case sensitive (i.e. *.bin is the same as
*.Bin). Check your DOS manual for additional wild card conventions.

To assist in jBMing the correct graphics input file*
enter a wild card file filter to display a subset of the
directory's files.
(i.e, *,dat or * bin), [ENTERJ^*.*

For this session press [ENTER]. A list of files appears on the screen, with
a request to Enter (F) to try another file filter, (C) to change the drive and path,
or (P) to proceed. For example:

The selected drive and path: *
tile default working directory: <
GLENWOOD.DAT JEM AGE L DAT
BS AVETST. BA$ DUM ,DAT

§78592 Bytes free

Enter (P) to try another file filter,
press (G) to CHANGE Drive and Path,
jpress (P) to proceed.

[MAGEGRCT»

For this session, press P, to proceed to the next screen.

The next screen prompt requests the input graphics file name. This is the
name of the PCX graphics file. The screen appears as follows:

Enter the graphics inptit filename with suffix (Le, file.PGX).

For demonstration purposes, a PCX graphics file named
IMAGEGRY.PCX has been included with the program. Enter the sample graphics
filename at this point (IMAGEGRY.PCX).

The sample image should now appear on your screen (fig. 1). The origin,
ending X and ending Y location have been labelled in the example file.

***** «*,** *« «*******
t* **»*» ***fcf*»fi»*M*
***** :* #**«!«*»»******

* * c» ********** A *

» ***«
«*****§**

Figure 1. Sample VGA graphics image that can be used in SCRNDIG for
test digitizing.

The next prompt, superimposed on the bottom of the image, should read as
follows:

EriterOQes to draw a screen grid, otherwise PRESS ANY KE3fv

For this example enter Y. The grid will be drawn later and is based on
information that will be entered later.

8

The next prompt below the displayed image is:

For this session enter 0, 22 for the X-axis information. These are in user
units, and for the image in figure 1, represent inches. These units can be anything
(cm, mm, volts). Note: the program will not allow the starting value to be
greater than the ending value. At this point, if you should enter only a single
point and press [ENTER], the program will return the message:

Control of this warning prompt cannot be prevented, and will cause the
screen image to roll up 1 text line. On a 25 line screen, this means that l/25th of
the image will roll off the top of the screen. If you can still see your registration
points, you can proceed and enter the second X value. If you proceed after the
screen has rolled up 1 line, the correct X and Y values will be saved, however,
the parameter file contains incorrect axis reference information. If you need to use
the continuation option, be sure to answer (N)o to the following continuation
option:

The new registration information will be applied to all newly digitized
values, and a correction for X and Y (based on the starting X and Y values) will
be applied to the coordinates digitized during the earlier session.
If you wish to start over press [CTRL] and [BREAK].

The next prompt is:

Be sure to input both starting and ending values on the same line, and
separate them with a comma. Failure to do so will cause the screen image to roll
up another 1/25 of the screen height. If you can still see all your comer
registration points, you may proceed in the same manner described earlier. If not,
press [CTRL] and [Break] and start over.

For this example enter 0, 11.

The next prompt is:

The mouse pointer is a white arrow that points upwards and to the left. The
image has a black 4- with an arrow pointing to it and is labelled "Origin". Move
the pointer down to the beginning of your X axis and press the left mouse button.
The point will be stored, and a beep sounded. This point is the origin of your data
system (lower left registration point). The origin is the frame of reference for the
conversion of screen units to user units. The origin need not be at X = 0, Y =
0.

The next prompt is:

10

Position the mouse cursor over the black + with the label "End X" and
press the left mouse button. A cyan colored line is drawn between the points.
You will next be prompted to enter the upper Y axis registration point.

Position the cursor over the black + near the label "End Y", and press the
left mouse button.

The next line that appears at the bottom of the image might look like the
following:

The first item, "X-axis CW 0.10°", informs us that the line defined by
the end points is rotated clockwise 0.10° from the horizontal. The next item, "Y-­
axis CW 0.28°", informs us the Y-axis is 0.28° from the vertical in a
clockwise direction. CCW stands for counter clockwise, and CW for clockwise.
The program mathematically corrects for a rotated image, but does not correct for
an image that is skewed from normal (angles are not right angles). The third item,
"PRESS ANY KEY to proceed.", means press any key to proceed with the
program.

Earlier in this example you selected to display a grid over the image. The
grid is drawn and is colored cyan to make it stand out on the black and white
image. The grid can be used as a reference to show how regular the data image
is. If the data image is out of square with the computer screen by more than 0.5°,
the grid will be drawn, but it may appear distorted. This is because there is no
correction built into drawing the grid on a severely skewed image.

11

If the axes are skewed more than 0.5° from being normal to each other the
following prompt will appear at the bottom of the screen:

After reading this prompt and pressing any key the next prompt appears.

If "Y" is selected the grid is left on the image. If "N" is selected the screen
image is cleared and the image redrawn.

The next prompt is:

To start digitizing, press the left cursor button on the mouse while it is
positioned over the point to be digitized. A beep is sounded, and the values are
shown in yellow at the bottom right hand side of the screen. The first item is the
number of digitized points, the second is the scaled X value, and the last is the
scaled Y value. Move the mouse over the next point to be digitized, and press the
left mouse button again. After the next point is digitized, the previously digitized
point will be marked on the screen with a small magenta circle. The marked
points will always be one point behind the current digitized location. If you make
a mistake, or just change your mind about a recording a digitized point, press the
[ESC] key. The point counter will be reduced by one, and the removed point will

12

be indicated in red (black if your image is a B/W PCX file). All but the first point
digitized may be removed in this manner. After you have digitized the last point,
press the right mouse key to stop digitizing.

The graphic image is cleared from the screen, and a list of files in the
selected directory is displayed.

Following the directory display is a prompt requesting the output file name
for the X-Y data.

Enter up to an eight-character filename, a decimal point, and a 3 character
extension. Follow standard DOS filename conventions.

The next prompt is:

Pressing any key other than the space bar will exit the program and display

The space bar loops back to the start of the program and allows for the entry
of more X-Y data.

13

SUMMARY

This program was written to be used as a tool to increase the ease of
digitizing screen images and has worked well for several applications. One feature
that would be useful to add at a future date would be a logarithmic scaling routine.

REFERENCES

Genus Microcomputing, 1991, PCX Programmer's Toolkit, United States.
International Business Machines Corporation, 1987, Reference Disk

Operating System Version 3.30, Boca Raton, Florida.
Microsoft Corporation, 1987, Microsoft BASIC Programmer's Guide

Version 7.0 For IBM Personal Computers and Compatibles, United States and
Canada.

Microsoft Corporation, 1991, Microsoft MS-DOS Users Guide and
reference for the MS-DOS Operating System version 5.0, United States.

14

APPENDIX BASIC program listings
SCRNDIG.BAS

DECLARE SUB wdir (d$)
DECLARE SUB DrawGrid (startx!, starty!, endx!, endy!, kbstartx, kbstarty!, kbendx, kbendy!, phi!)
DECLARE SUB screenmode (smode%)
DECLARE SUB namechange (filein$, fileout$)
'This screen displaying and digitizing program was developed by:
'Philip S. Powers (USGS) and Giovanni Crosta (University of Milano)
'to meet a small void in the vast world of programs.
'There are several restrictions to the program.
'1. The input image format is VGA (640X480) PCX format.
'2. The mouse cursor is a block that sometime wipes out the digitized points.
'3. The array dimension is set for 4000 points.
'4. The digitized points are not painted until the next point is picked.

DEFINT B-D, F-J, L-0, Q-R, T-Z
'$INCLUDE: 'general.bi'
'$INCLUDE: 'mousel.bi'
'$INCLUDE: 'gxlib.bas'
'$INCLUDE: 'pcxlib.bas'

COMMON SHARED arrayXO, arrayYO
COMMON /blockl/ phi!, point!, startx, starty, startxy, startyy, endx, endy, endxy, endyy
COMMON /block2/ UserX!, UserY!, grid%, kbstarty, kbendy, oldpointi%, SX%, SY%, es%
dimx% = 4000
dimy% = 4000
DIM arrayX(dimx%), arrayY(dimy%), x%(dimx%), y%(dimy%)
oldpointi% = 0

Select graphics adapter
The default is set to VGA (12)

ON ERROR GOTO wrongscrn:

IFsmode% <> 12 THEN
CALL screenmode(smode%)

END IF

ON ERROR GOTO 0

CLS

Print a title on the screen

15

PRINT " DEPARTMENT OF THE INTERIOR"
PRINT " U.S. GEOLOGICAL SURVEY"
PRINT
PRINT
PRINT
PRINT " SCRNDIG--A BASIC program for digitizing"
PRINT " from a screen image on a DOS-based computer"
PRINT "
PRINT
PRINT
PRINT " by"
PRINT
PRINT
PRINT
PRINT " Philip S. Powers and Giovanni Crosta"
LOCATE 25, 1
COLOR 0, 7
PRINT "To continue, PRESS ANY KEY.";
COLOR 7, 0

DO WHILE INKEY$ = ""
LOOP

CLS
PRINT " * * * IMPORTANT * * * "

PRINT
PRINT "If you find it necessary to stop the program at any time,"
PRINT "press ";
COLOR 0, 7
PRINT "[CTRL] [Break]. ";
PRINT
PRINT
COLOR 7, 0
PRINT "To continue with the program ";
COLOR 0, 7
PRINT " PRESS ANY KEY. "
COLOR 7, 0
DO WHILE INKEY$ = ""
LOOP

CLS

Radian to degree conversion

DEF FNdeg! (phi!)
STATIC tmp!
pi! = 3.141593
tmp! = 180 /pi! * phi!

16

FNdeg! = tmp!
END DEF

' Loop back label for a continuation of prior plot.

runplotagn:
CLS
doagn:
kpress$ = ""
PRINT "If this is the continuation of a plot, and you would like to "
PRINT "digitize more data points where you stopped,"
PRINT ""

PRINT " enter (";
COLOR 0, 7
PRINT " Y ";
COLOR 7, 0
PRINT ")es,"
PRINT " if not, press (";
COLOR 0, 7
PRINT " N ";
COLOR 7, 0
PRINT ")o. "
PRINT " For HELP press (";
COLOR 0, 7
PRINT " H ";
COLOR 7, 0
PRINT ")elp. "

DO WHILE kpress$ = ""
kpress$ = INKEY$

LOOP

cont$ = UCASE$(kpress$)

IF cont$ < > "Y" AND cont$ < > "N" AND cont$ < > "H" THEN
PRINT "Please enter Y, N, or H."
GOTO doagn:

END IF

IF cont$ = "Y" THEN
CLS
GOSUB filter:
INPUT "Enter the graphics input file name with suffix, (i.e. filename.PCX) ", pcximage$
CALL namechange(pcximage$, fileout$)
PRINT "The Default input parameter file name is: ";
COLOR 0, 7
PRINT fileout$ + ".par"
COLOR 7, 0

17

LINE INPUT "Press [ENTER] for default, else enter input parameter file name. ", parm$

IF LEN(parm$) = 0 THEN
parmfilename$ = fileout$ + ".par"

ELSE
parmfilename$ = parm$

END IF

PRINT "The Default X,Y data file name is: ";
COLOR 0, 7
PRINT fileout$ + ".dat"
COLOR 7, 0
INPUT "Press [ENTER] for default, else enter X,Y data file name *.DAT. ", data$

IF LEN(data$) = 0 THEN
datafilename$ = fileout$ + ".dat"

ELSE
datafilename$ = data$

END IF
GOTO arnd:

END IF

IF cont$
CLS
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
GOTO

END IF

= "H" THEN

'A continuation means that you have already digitizing data from a "
'SCREEN image during a prior digitizing session and you would like"
'to continue at the point where you left the program during the prior
'session. The additional information needed for continuation"
'was saved in two auxiliary files. These files have a default"
'extension of *.DAT and *.PAR. "
'You will be requested to enter the proper filenames if you select"
'(Y)es for a continuation. "
'The first requested input is the graphics file."
'The second requested input is the parameter file."
'The third requested input is the ASCII data file."

doagn:

CLS

' Return point from error trapping routine "error2".
i

retry:
SCREEN 0
LOCATE 3, 1
PRINT "

LOCATE 3, 1

18

PRINT "To assist in finding the correct graphics input file,"
GOSUB drivesetup:
GOSUB filter:
INPUT "Enter the graphics input filename with suffix (i.e. file.PCX). ", pcximage$
CALL namechange(pcximage$, fileout$)
i

' If cont$ ="Y" then program skips around image conversion statements above.
' and ends up at label "arnd:".
/

arnd:
CLS

IF samereg% = 1 THEN GOTO arndrpt:
IF cont$ = "Y" THEN

repeat2:
PRINT "Do you wish to use the same axis registration points? "
PRINT "Enter (";
COLOR 0, 7
PRINT " Y ";
COLOR 7, 0
PRINT ")es or (";
COLOR 0, 7
PRINT " N ";
COLOR 7, 0
PRINT ")o."
ans$ = ""

DO WHILE ans$ = ""
ans$ = INKEY$

LOOP

ans$ = LEFT$(UCASE$(ans$), 1)

SELECT CASE ans$
CASE"Y"

samereg% = 1
CASE "N"

samereg% = 0
CASE ELSE

GOTO repeat2:
END SELECT

END IF
i

' If flag "samereg" = 1 then this is where program jumps to.
i

arndrpt:

CLS
pcxtype% = pcxGetFileType%(path$ + pcximage$)

19

IF (pcxtype% > = gsMINDISP) THEN
retcode% = gxVerifyDisplayType(pcxtype%)
IF (retcode% = gxSUCCESS) THEN

'We can ...
END IF

ELSE
PRINT "PCX file header is not recognized. Punt. 1
STOP

END IF

'Change from text screen mode to graphics screen mode.
'Load in and display the graphics image using assembly language
'library routines.

SCREEN smode%

' Globals
' Set up to display the correct resolution image.
i

SELECT CASE pcxtype%
CASED

pcxtype% = gxCGA.4
PRINT "Image not a VGA image. Punt."
STOP

CASE 1
pcxtype% = gxCGA.6
PRINT "Image not a VGA image. Punt."
STOP
CASE 2
pcxtype% = gxEGA.D
PRINT "Image not a VGA image. Punt."
STOP

CASE 3
pcxtype% = gxEGA.E
PRINT "Image not a VGA image. Punt."
STOP

CASE 4
pcxtype% = gxEGA.F
PRINT "Image not a VGA image. Punt."
STOP

CASE 5
pcxtype% = gxEGA.10
PRINT "Image not a VGA image. Punt."
STOP

CASE 6
pcxtype% = gxVGA.11

CASE 7
pcxtype% = gxVGA.12

20

CASES
pcxtype% = gxVGA.13
PRINT "Image is 320X200 pixels by 256 colors.'
PRINT "Image not to 640 X 480 specifications."
STOP

END SELECT

retcode% = gxSUCCESS
tempret% = gxSUCCESS

' Display program header

' Set the display type and mode we will be using
retcode% = gxSetDisplay%(pcxtype%)

' Now enter graphics mode
retcode% = gxSetMode%(gxGRAPHICS)

' Now display the image file

IF (retcode% = gxSUCCESS) THEN
retcode% = pcxFileDisplay%(path$ + pcximage$, 0, 0, 0)

END IF

' Check if everything went OK
IF (retcode% < > gxSUCCESS) THEN

PRINT
PRINT "An error occurred: ["; retcode%; "]"
PRINT
PRINT "You may not have a CGA, EGA, or VGA / the image may not'
PRINT "be in the current directory ..."
PRINT

END IF

'If this is a continuation, read in the previously digitized points.

IF cont$ = "Y" THEN
parmfilename$ = path$ + parmfilename$
OPEN parmfilename$ FOR INPUT AS #10
INPUT #10, oldpointi%, phi!, startx, starty, endx, endy, endxy, endyy
INPUT #10, kbstartx, kbendx, kbstarty, kbendy
oldstartx = startx 'Save for deriving correction factor for x.
oldstarty = starty 'Save for deriving correction factor for y.

21

lenX! = ((endx - startx)) / COS(phil)
lenY! = ABSKendyy - starty)) / COS(phil)
UserX! = lenX! / (kbendx - kbstartx)
UserY! = lenY! / (kbendy - kbstarty)

' Read in previous digitized points.

FOR 1% = 1 TO oldpointi%
INPUT #10, x%(l%), y%(l%)

NEXT l%
CLOSE #10

END IF

cont:
CALL Mouselnit
CALL MouseShow

LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "Enter (Y)es to draw a screen grid, otherwise PRESS ANY KEY to proceed. ";

kpress$

DO WHILE kpress$ = ""
kpress$ = INKEY$

LOOP

IF UCASE$(kpress$) = "Y" THEN

IF cont$ = "Y" AND samereg% = 1 THEN
CALL DrawGrid(startx, starty, endx, endy, kbstartx, kbstarty, kbendx, kbendy, phi!)
LINE (startx, startyHendx, endy), 3
LINE (startx, startyHendxy, endyy), 3
grid% = 0

END IF

grid% = 1
ELSE

grid% = 0
END IF

'If this is a continuation skip around the inputs that follow

IF samereg% = 1 THEN GOTO skip:
stx:

LOCATE 29, 1
PRINT " ";
LOCATE 29, 1
ON ERROR GOTO stx:

22

INPUT ; "Enter the starting X, then ending X value (ex. 0, 22). ", kbstartx, kbendx
ON ERROR GOTO 0
IF kbstartx > kbendx THEN

LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "The starting X must be smaller than the ending X. Press Any Key. ";
kpress$ = ""
DO WHILE kpress$ = ""

kpress$ = INKEY$
LOOP
GOTO stx:

END IF

xrange = ABS(kbendx - kbstartx)
sty:

LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
INPUT ; "Enter the starting Y, then ending Y value (ex. 0, 11). ", kbstarty, kbendy

IF kbstarty > kbendy THEN
LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "The starting Y must be smaller than the ending Y. Press Any Key. ";
kpress$ = ""
DO WHILE kpress$ = ""

kpress$ = INKEY$
LOOP
GOTO sty:

END IF

redo: 'Redo input if angle between axes is too extreme. (>0.5°)
regx = 1
LOCATE 29, 1
PRINT "Using the mouse pointer, click on the lower left registration point.";

Ip1:
CALL MousePolKrow, col, I Button, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF regx = 0 THEN GOTO Ip11:
GOTOIpl:

Ip11: regx = 2

LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "Using the mouse pointer click on the lower right registration point.";

Ip2:
CALL MousePolKrow, col, (Button, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF regx = 0 THEN GOTO Ip22:
GOTO Ip2:

23

Ip22: regy = 2
LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "Using the mouse pointer click on the upper left registration point.";

Ip3:
CALL MousePolKrow, col, (Button, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)
IF regy = 0 THEN GOTO Ip33:
GOTO Ip3:

Ip33:
'Angle of rotation (If Phi is positive then image is rotated counter clockwise).

phi! = ATN((starty - endy) / (endx - startx))
yrange = ABS(kbendy - kbstarty)

'Length of X line in screen units
Lx! = endx - startx

'Calculate angle between X and Y axes on the basis of the markers.
phi2! = ATN(ABS(endxy - startx) / ABS(endyy - starty))

IF endxy > startx THEN
phi2! = -phi2

rotation $ = "CW"
ELSE

rotation$ = "CCW"
END IF

phi2deg! = FNdeg!(phi2!)
phi2deltadeg! = phi2deg!
LOCATE 29, 1
PRINT " ";
LOCATE 29, 1
phideg! = FNdegKphi!)

IF phideg! < 0 THEN
PRINT USING "X-axis CW ###.##° "; ABS(phidegJ);

ELSE
PRINT USING "X-axis CCW ###.##° "; ABS(phideg!);

END IF

LOCATE 29, 25
PRINT" ";
LOCATE 29, 25

PRINT USING " Y-axis " + rotation$ + " ###.##° \ \"; ABS(phi2deltadeg!);
lenX! = ((endx - startx)) / COS(phi!)
lenY! = ABS((endyy - starty)) / COS(phi!)

'Inches per screen unit
UserX! - lenX! / (kbendx - kbstartx)
UserY! = lenY! / (kbendy - kbstarty)

PRINT " PRESS ANY KEY to proceed.";

DO WHILE INKEY$ = ""
LOOP
IF ABS(phi2deltadeg! - phideg!) > .5 THEN

24

LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "The axes are skewed by more then 0.5°. PRESS ANY KEY to proceed.";

DO WHILE INKEY$ = ""
LOOP

Iback:
LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "Display the grid anyway? (Y)es or (N)o. ";
ans$ = ""

DO WHILE ans$ = ""
ans$ = INKEY$
ans$ = UCASE$(ans$)

LOOP

IF ans$ = "Y" THEN
GOTO skip:

END IF

IF ans$ = "N" THEN
CLS
retcode% = pcxFileDisplay%(path$ + pcximage$, 0, 0, 0)

END IF

IF ans$ < > "Y" AND ans$ < > "N" THEN
LOCATE 29, 1
PRINT" ";
PRINT "Please Enter (Y)es or (N)o. Press any key."
kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$

LOOP
GOTO Iback:

END IF

END IF

skip:

'Redraw the origin and axis registration points.

IF samereg% = 1 THEN

25

CIRCLE (startx, starty), 3, 10
PAINT (startx, starty), 13, 10
CIRCLE (endx, endy), 3, 10
PAINT (endx, endy), 13, 10
CIRCLE (endxy, endyy), 3, 10
PAINT (endxy, endyy), 13, 10

END IF

START DIGITIZING

IF cont$ = "Y" THEN

IF samereg% = 0 THEN 'Correct for shift of shreen
corstartx = startx - oldstartx
corstarty = starty - oldstarty
FOR l% = 1 TO oldpointi%

x(l%) = x(l%) + corstartx
y(l%) = y(l%) + corstarty

NEXT l%
samereg% = 0
END IF

FOR l% = 1 TO oldpointi%
CIRCLE (x%(l%), y%(l%)), 3, 10
PAINT (x%(l%), y%(l%)), 13, 10

NEXT I %

END IF

LOCATE 29, 1
PRINT " ";
LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "Mouse keys (LEFT = Store pt. RIGHT = Stop).";

DO

CALL MousePolKrow, col, (Button, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx)

IF pointi 00 AND es% = 0 THEN
x% (point! + oldpointi%) = col
y%(pointi + oldpointi%) = row

END IF

er$ = INKEY$
IF er$ = "" THEN GOTO arndASCstmt:

26

IF ASC(er$) = 27 THEN 'Escape key pressed. Decrement pointer

IF point! > 1 THEN
CIRCLE (x%(pointi + oldpointi%), y%(pointi + oldpointi%)), 2, 4
PAINT (x%(pointi + oldpointi%), y%(pointi + oldpointi%)), 4, 4
point! = point! - 1
BEEP
LOCATE 29, 45
PRINT" ";
COLOR 14
LOCATE 29, 45
PRINT USING " ## ####.### ####.### "; point! + oldpointi%; arrayX(pointi);

array Y(pointi);
COLOR 15
es% = 1

END IF

er$ = ""

END IF

arndASCstmt:

IF done% = 1 THEN GOTO done:
LOOP

Do the file work next.
Save the actual X,Y data in a file.
Select the default file name or enter a new name.
If file name already exists, give options

' The right mouse button has been pushed. Finish up with
' saving the data in files.
i

done:

'Change screen display back to a text screen from graphics screen.

SCREEN 0

PRINT "Enter the name of the X-Y data output file."
PRINT "(Enter up to 8 characters for the file name, a decimal point,'
PRINT "and then up to a 3 character extension)."
CALL namechange(pcximage$, fileout$)
PRINT "The current default file name is: ";
COLOR 0, 7
PRINT fileout$ + ".dat"

27

COLOR 7, 0
LINE INPUT "To accept the default name press [ENTER], else enter new name. "; filename$

IF LEN(filename$) = 0 THEN
datafilename$ = path$ + fileout$ + ".DAT"

ELSE
datafilename$ = path$ + filename$

END IF

CLS
PRINT "The values are comma separated, with a X, Y pair on each line."
PRINT "The output format is free format."
ON ERROR GOTO erroM:
OPEN datafilename$ FOR INPUT AS #2
ON ERROR GOTO 0
CLOSE #2
PRINT

'File already existed, make selection to overwrite, append or select new name.

IF UCASE$(LEFT$(cont$, 1)) <> "Y" THEN
COLOR 0, 7
PRINT datafilename$; " already exits."
COLOR 7, 0
ans$ = ""

DO WHILE ans$ < > "Y" AND ans$ < > "A" AND ans$ < > "N"
PRINT "Enter Y = Overwrite, A = Append, or else N to enter a different name. ";
kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$

LOOP

ans$ = UCASE$(kpress$)
LOOP

IF ans$ = "Y" THEN
KILL datafilename$
GOTO proceed:

END IF

IF ans$ = "A" THEN
append$ = "A"
GOTO proceed:

END IF

datafilename$ = ""
GOTO done:

END IF

proceed:

28

ON ERROR GOTO 0

IF append$ = "A" OR cont$ = "Y" THEN
CLOSE #3
OPEN datafilename$ FOR APPEND AS #3
append$ = ""

ELSE
OPEN datafilename$ FOR OUTPUT AS #3

END IF

FOR l% = 1 TO pointi
PRINT #3, USING " ####.###_, ####.###"; arrayX(l%); arrayY(l%)

NEXT l%
CLOSE #3

CALL namechange(pcximage$, fileout$)
CLOSE #10
parmfileout$ = fileout$ + ".par"
parmfileout$ = path$ + parmfileout$
'Write out the file digitizing parameters.
OPEN parmfileout$ FOR OUTPUT AS #10
PRINT #10, pointi + oldpointi%, phi!, startx, starty, endx, endy, endxy, endyy
PRINT #10, kbstartx, kbendx, kbstarty, kbendy

FOR l% = 1 TO pointi + oldpointi%
PRINT #10, x%(l%), y%(l%)

NEXT l%

CLOSE #10
CLS
PRINT "Press Space bar to RUN program again, else any other key EXIT."
PRINT "";
s$ = ""

DO WHILE s$ = ""
s$ = INKEY$

LOOP

' ASCII character 32 is the space bar.
/

IF s$ = CHR$(32) THEN
CLOSE #2
CLS
cont$ = ""
done% = 0
pointi = 0
GOTO runplotagn:

ELSE
CLS
GOTO donel:

END IF

29

donel:
CIS
PRINT " ALL DONE."
BEEP
BEEP
CLOSE #1
GOTO terminate:

'Display all files in the selected drive and path.
filter:
PRINT "To assist in finding the correct graphics input file,"
PRINT "enter a wild card file filter to display a subset of the*
PRINT "directory's files."
PRINT "(i.e. *.dat or *.bin). [ENTER] = *.* "
LINE INPUT filter$
CLS
IFfilter$ = "" THEN filter $ = "*.*"

IF LEFT$(filter$, 1) = CHR$(34) THEN
'Strip off and quotation marks from the beginning and end.

I = LEN(filter$)
filter$ = MID$(filter$, 2, I- 1)

IF RIGHT$(filter$, 1) = CHR$(34) THEN
filter$ = MID$(filter$, 1, I-2)

END IF

END IF

dpath$ = path$ + filter$
filter2:
PRINT "The selected drive and path: "; dpath$
ON ERROR GOTO er1:
PRINT "The default working directory: ";
FILES dpath$
ON ERROR GOTO 0
PRINT
PRINT "Enter (";
COLOR 0, 7
PRINT " F ";
COLOR 7, 0
PRINT ") to try another file filter, "
PRINT "press (";
COLOR 0, 7
PRINT " C ";
COLOR 7, 0
PRINT ") to CHANGE Drive and Path."
PRINT "press (";
COLOR 0, 7
PRINT " P ";
COLOR 7, 0
PRINT ") to proceed. "; ""

30

ans$ = ""

DO WHILE ans$ = ""
ans$ = INKEY$
ans$ = UCASE$(ans$)

LOOP

IF ans$ = "F" THEN
GOTO filter:

END IF

IF ans$ = "C" THEN
GOSUB drivesetup:
GOTO filter2:

END IF

IFans$ = "P"THEN
RETURN

END IF

IF ans$ < > "F" AND ans$ < > "P" AND ans$ < > "C" THEN
CLS
PRINT "Please enter F, C, or P."
GOTO filter2:

END IF

RETURN

drivesetup:

' Set up the drive and path for the batch files and programs."
i
COLOR 23
PRINT "Enter the drive and path of the image/data files."
COLOR 7
PRINT
PRINT " (i.e. A:\temp)"
PRINT
PRINT "[ENTER] on an empty line means your files are in the"
INPUT "current directory. ", path$
CLS

IF LEN(path$) = 0 THEN
path$ = ""
RETURN

END IF

agn3:

IF LEN(path$) < 2 THEN
PRINT "Enter (";
COLOR 0, 7

31

PRINT " Y ";
COLOR 7, 0
PRINT ")es if ";
COLOR 0, 7
PRINT path$;
COLOR 7, 0
PRINT " is a drive letter, else press (";
COLOR 0, 7
PRINT " N ";
COLOR 7, 0
PRINT ") if a path."
ans$ = ""
kpress$ = ""

DO WHILE kpress$ = ""
kpress$ = INKEY$

LOOP

ans$ = UCASE$(kpress$)

IF ans$ < > "Y" AND ans$ < > "N" THEN
PRINT "Please respond with Y or N."
GOTO agn3:

END IF

IF ans$ = "Y" THEN
path$ = path$ + ":"

END IF

END IF

IF RIGHT$(path$, 1) <> "\" THEN
path$ = path$ + "\"

END IF

dpath$ = path$ + filter$

RETURN

' This is the end of the program
/

terminate: END

' End of the Program and start of the error trapping routines.

er1:
CLS

32

IF ERR = 53 THEN
PRINT
PRINT " No match."
PRINT
PRINT "Press (";
COLOR 0, 7
PRINT " C ";
COLOR 7, 0
PRINT ") to Change the Drive and Path,"
PRINT "Press ";
COLOR 0, 7
PRINT " ANY OTHER KEY ";
COLOR 7, 0
PRINT "to change file filter."
kpress$ = ""
DO WHILE kpress$ = ""

kpress$ = INKEY$
cont$ = UCASE$(kpress$)

LOOP

IF cont$ = "C" THEN
GOSUB drivesetup:

END IF

RESUME filter2:
END IF

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL

IF ERR = 71 THEN
path$ = ""
PRINT
COLOR 23
PRINT "* * NO disk in drive or drive door OPEN * *."
COLOR 7
PRINT "Close drive door or select the correct drive, and then restart program.'
GOTO terminate:

END IF

PRINT "Debug and restart program."
GOTO terminate:

error 1:

IF ERR = 53 THEN
CLOSE #2

IF UCASE$(LEFT$(cont$, 1)) = "Y" THEN
PRINT "Cannot continue with this file name selection."
PRINT "Select another file name."
PRINT "Press ANY KEY to proceed."

33

DO WHILE INKEY$ = ""
LOOP

RESUME done:
END IF

RESUME proceed:
END IF

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL
PRINT "Debug and restart program. 1
GOTO terminate:

'Unable to set the screen mode to 12 (VGA is required.)
/

wrongscrn:
PRINT "This program requires a VGA adapter. Please run the program on
PRINT "a system with a VGA adapter. "
GOTO terminate:

' Trap for file not found error.
/

error2:
IF ERR = 53 THEN

PRINT "Graphics input file not found. Please retry with a new name.
FILES "*.bin"
RESUME retry:

END IF

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL
PRINT "Debug and restart program."
GOTO terminate:

' Trap for file not found error with a different outcome.

error3:

PRINT "ERROR DETECTED. "; ERR
PRINT "LINE DETECTED. "; ERL
PRINT "Debug and restart program. 1
GOTO terminate:

' Routine finds the first name of a file name.

34

SUB namechange (filein$, firstname$) STATIC
'Determine the first part of the input file name.
I = LEN(filein$)
FOR 1% = 1 TO I

char$ = MID$(filein$, l%, 1)
IFchar$ = "." THEN

EXIT FOR
END IF

NEXT l%
'Handle condition where file input name does not have an extension.
i

IF l% > I THEN
' Reached end of file name with no decimal point found.
' No file name extension. Assume .PCX and affix to filename.

firstname$ = filein$
filein$ = filein$ + ".PCX"
EXIT SUB

END IF

firstname$ = LEFT$(filein$, l% - 1)

END SUB

Sets the screen mode to VGA (12)

SUB screenmode (smode%)
smode% = 12

END SUB

Selects the drive and directory for location of files.

SUB wdir (d$)
LOCATE 1, 1
PRINT "
LOCATE 1, 1
d1$ = ""

IFd$ 0 ""THEN
PRINT "Press [ENTER] to select "; d$; " as disk and directory "
INPUT "or enter the drive and subdirectory (i.e. C:\SUB1 \). ", d1 $

ELSE
PRINT " There is no previous selection of drive or directory."
INPUT " Enter the drive and subdirectory (i.e. C:\SUB1 \). ", d1 $

END IF

IFd1$ = "" THEN EXIT SUB
d$ = d1$

END SUB

35

MOUSE.BAS

DECLARE SUB DrawGrid (startx!, starty!, endx!, endy!, kbstartx!, kbstarty!, kbendx!, kbendy!, phi!)
DECLARE SUB SvPoint (row%, col%, pointi%)
COMMON SHARED /blockl/ phi!, pointi, startx, starty, startxy, startyy, endx, endy, endxy, endyy
COMMON SHARED /block2/ UserX!, UserY!, grid%, kbstarty, kbendy, oldpointi%, SX%, SY%, es%

MOUSE.BAS - Mouse Support Routines for the User Interface Toolbox in
Microsoft BASIC 7.1, Professional Development System

Copyright (C) 1987-1990, Microsoft Corporation

NOTE: This sample source code toolbox is intended to demonstrate some
of the extended capabilities of Microsoft BASIC 7.1 Professional
Development system that can help to leverage the professional
developer's time more effectively. While you are free to use,
modify, or distribute the routines in this module in any way you
find useful, it should be noted that these are examples only and
should not be relied upon as a fully-tested "add-on" library.

PURPOSE: These routines are required for mouse support in the user
interface toolbox, but they may be used independently as well.

For information on creating a library and QuickLib from the routines
contained in this file, read the comment header of GENERAL.BAS.

DEFINT B-D, F-J, L-0, Q-R, T-Z
'$INCLUDE: 'general.bi'
'$INCLUDE: 'mousel.bi'
'$INCLUDE: 'menu.bi'
COMMON SHARED arrayXO, arrayYO
COMMON SHARED /uitools/ GloMenu
COMMON SHARED /uitools/ GloTitleO
COMMON SHARED /uitools/ GloltemO

AS MenuMiscType
AS MenuTitleType
AS MenultemType

SUB DrawGrid (startx, starty, endx, endy, kbstartx, kbstarty, kbendx, kbendy, phi)
phi = ATN((starty - endy) / (endx - startx))
IF phi < .0176 THEN 'Do not draw if angle > 1 degree

pixinX = endx - startx
pixperunitX = pixinX / (kbendx - kbstartx)
pixinY = starty - endyy
pixperunitY = pixinY / (kbstarty - kbendy)
numYlines = ABS(ABS(kbendy) - kbstarty)
FOR i% = 1 TO numYlines

LINE (startx, starty + pixperunitY * i%)-(endx, endy + pixperunitY * i%), 3
NEXT i%
numXIines = ABS(ABS(kbendx) - kbstartx)

36

FOR i% = 1 TO numXIines
LINE (startx + pixperunitX * i%, startyHendxy + pixperunitX * i%, endyy), 3

NEXT i%
ELSE

LOCATE 29, 1
PRINT" ";
LOCATE 29, 1
PRINT "Correction angle too large. Grid not drawn! PRESS ANY KEY. ";
DO WHILE INKEY$ = ""
LOOP

END IF

END SUB

SUB MouseBorder (rowl, coM, row2, co!2) STATIC

' Sets max and min bounds on mouse movement both vertically, and
' horizontally

MouseDriver 7, 0, (col! - 1) * 8, (co!2 - 1) * 8
MouseDriver 8, 0, (rowl - 1) * 8, (row2 - 1) * 8

END SUB

SUB MouseDriver (mO, ml, m2, m3) STATIC

DIM regs AS RegType

IF MouseChecked = FALSE THEN
DEF SEG = 0

MouseSegment& = 256& * PEEK(207) + PEEKI206)
MouseOffset& = 256& * PEEK(205) + PEEK(204)

DEF SEG = MouseSegment&

IF (MouseSegment& = 0 AND MouseOffset& = 0) OR PEEK(MouseOffset&) = 207 THEN
MousePresent = FALSE
MouseChecked = TRUE
DEF SEG

END IF
END IF

IF MousePresent = FALSE AND MouseChecked = TRUE THEN
EXIT SUB

END IF

37

' Calls interrupt 51 to invoke mouse functions in the MS Mouse Driver.

regs.ax = mO
regs.bx = ml
regs.cx = m2
regs.dx = m3

Interrupt 51, regs, regs

mO = regs.ax
ml = regs.bx
m2 = regs.cx
m3 = regs.dx

IF MouseChecked THEN EXIT SUB

' Check for successful mouse initialization

IF mO AND NOT MouseChecked THEN
MousePresent = TRUE
DEF SEG

END IF

MouseChecked = TRUE

END SUB

SUB MouseHide

' Decrements internal cursor flag

MouseDriver 2, 0, 0, 0

END SUB

SUB Mouselnit

38

' Mouse driver's initialization routine

MouseDriver 0, 0, 0, 0

END SUB

SUB MousePoll (SY%, SX%, IButton, rButton, done%, regx, regy, kbstarty, kbendy, kbstartx, kbendx!)
STATIC

' Polls mouse driver, then sets parms correctly
i

' This routine has been extensively modified for use with SCRNDIG.BAS
' The mouse is checked for movement of more than 5 pixels in either
' X or Y.
' The end point registration and origin are selected here.
' Rotation of the X-Y system is corrected here.
' and the data points are displayed on the screen here.

SHARED arrayX(), arrayYO, pointi, startx, starty, startxy, startyy, endx, endy, endxy, endyy
SHARED phi!, UserX!, UserY!, grid%, oldpointi%, es%

MouseDriver 3, button, col, row

' The left mouse button was pushed.
IF button AND 1 THEN

IButton = TRUE
ELSE

IButton = FALSE
END IF

' The right mouse button was pushed.
IF button AND 2 THEN

rButton = TRUE
ELSE

rButton = FALSE
END IF
IF rButton = -1 THEN

done% = 1
END IF

'The cursor has moved at least five pixels from the last point and
'the button has been pressed to save another point.

IF IButton = -1 AND ((ABS(SX% - col) > 5) OR &fcBS(SY% - row) > 5)) THEN

' The origin of the X-Y system.

IF regx = 1 THEN
startx = col
starty = row
startxy = col
startyy = row
regx = 0
SX% = col
SY% = row
BEEP
EXIT SUB

END IF

' The end of the X line.

IF regx = 2 THEN
endx = col
endy = row
regx = 0
SX% = col
SY% = row
BEEP
LINE (startx, startyHendx, endy), 3
EXIT SUB

END IF

' The end of the Y line.

IF regy = 2 THEN
endxy = col
endyy = row
regy = 0
LINE (startx, startyHendxy, endyy), 3
SX% = col
SY% = row

' Draw the grid.

IF grid% = 1 THEN
CALL DrawG rid (startx, starty, endx, endy, kbstartx, kbstarty, kbendx, kbendy, phi!)

END IF

BEEP
EXIT SUB

END IF
inside:

' Mark the previously digitized point.

IF pointi = 0 THEN GOTO Id2:

40

IF es% = 0 THEN
CIRCLE (SX%, SY%), 2, 13
PAINT (SX%, SY%), 13, 13

END IF

es% = 0
Id2: point! = point! + 1

'Correct for skewness with simple conversion routine.
'Assumption is that there is only a rotation about the origin
'A! and B! are the X,Y values minus the origin X,Y

A! = (col - startx)
B! = (starty - row)

IF A! <> 0 THEN 'Not on the Y axis
phi3! = ATN(B! /A!)

ELSE
phi3! = 3.14159 12

END IF

IF phi3! < > phi! THEN
IF phi3! = 0 THEN

BB! = A!
GOTO arnd2:

END IF
BB! = B! / SIN(phi3!)

ELSE
BB! = A! 'On the X axis and they are equal.

END IF

arnd2: corrX! = BB! * COS(phi3! - phi!)
corrY! = BB! * SIN(phi3! - phi!)
arrayX(pointi) = kbstartx + (corrX! / UserX!)
arrayY(pointi) = kbstarty + (corrY! / UserY!)
BEEP
LOCATE 29, 45
PRINT " ";
COLOR 14
LOCATE 29, 45
PRINT USING " ## ####.### ####.### "; point! + oldpointi%; arrayX(pointi);

arrayY(pointi);
COLOR 15
SX% = col
SY% = row

END IF

END SUB

41

SUB MouseShow

' Increments mouse's internal cursor flag

MouseDriver 1, 0, 0, 0

END SUB

42

